Roll No. \square Total No. of Pages : 3
Total No. of Questions: 09

B.Tech. (Sem.-2 ${ }^{\text {nd }}$)
 ENGINEERING MATHEMATICS-II
 Subject Code : BTAM-102 (2011 Batch)
 Paper ID : [A1111]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Solve the following sums :
(a) Test whether the set of vectors $\{(1,1,1),(1,-1,1),(3,-1,3)\}$ are LI or LD by giving suitable reason?
(b) Find the rank of the matrix $\left(\begin{array}{rrrr}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right)$
(c) Reduce the matrix $\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right)$ to diagonal form.
(d) If $x=\cos \theta+i \sin \theta$, and $y=\cos \phi+i \sin \phi$, then show that

$$
\frac{x-y}{x+y}=i \tan \frac{\theta-\phi}{2}
$$

(e) Find all the values of $\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3 / 4}$.
(f) Examine the conditional convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$.
(g) Test the convergence of the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-n^{2}}$.
(h) Show that the necessary condition for the differential equation $\mathrm{M} d x+\mathrm{N} d y=0 \quad \frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}$ is
(i) Find the particular solution of the equation $\frac{d^{3} y}{d x^{3}}+4 \frac{d y}{d x}=\sin 2 x$.
(j) Solve the equation $e^{2 z-1}=1+i$

SECTION-B

2. (a) Obtain the general solution of the equation $y^{/ /}-6 y^{\prime}+9 y=e^{3 x} / x^{2}$, by using method of variation of parameters,
(b) Find the complete solution of the differential $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \sin x$.
3. (a) Solve the following simultaneous differential equation

$$
\frac{d x}{d t}-2 y+5 x=t, \frac{d y}{d t}+2 x+y=0 . \text { Given that } x(0)=0, y(0)=0
$$

(b) Find the complete solution of the differential equation
$(1+x)^{2} y^{/ /}+(1+x) y^{\prime}+y=2 \sin \log (1+x)$.
by using operator method.
4. (a) Solve the differential equation $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$
(b) Solve the equation $y=2 p x+y p^{2}$ where p has its usual meaning.
5. An e.m.f. $E \sin p t$ is applied at $t=0$ to a circuit containing a capacitance C and inductance L. The current i satisfies the equation $\mathrm{L} \frac{d i}{d t}+\frac{1}{C} \int_{i d t}=E \sin p t$. If $p^{2}=1 / \mathrm{LC}$ and initially the current and the charge are zero then find the current at any time t.

SECTION-C

6. (a) Use the rank method to test the consistency of the system of equations

$$
4 x-y=12 ;-x+5 y-2 z=0 ;-2 y+4 z=-8
$$

if consistent then solve it completely,
(b) State Cayley-Hamilton theorem. Use it to find the inverse of the matrix

$$
\left(\begin{array}{ccc}
4 & 3 & 1 \\
2 & 1 & -2 \\
1 & 2 & 1
\end{array}\right)
$$

7. (a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right)
$$

(b) Prove that eigen values of a skew hermetian matrix are either zero or purely imaginary.
8. (a) Test for what values of x the series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n}, x>0
$$

Convergences/diverges
(b) Test convergence/diverge of the series

$$
\sum_{n=1}^{\infty}\left[\sqrt{\left(n^{4}+1\right)}-\sqrt{\left(n^{4}-1\right)}\right]
$$

9. (a) Use Demoivre's theorem to solve the equation $(z-1)^{5}+z^{5}=0$
(b) Separate $\sin ^{-1}\left(e^{i \theta}\right)$ into real and imaginary parts, where θ is a positive acute angle.
